Gyramides Prevent Bacterial Growth by Inhibiting DNA Gyrase and Altering Chromosome Topology
نویسندگان
چکیده
Antibiotics targeting DNA gyrase have been a clinical success story for the past half-century, and the emergence of bacterial resistance has fueled the search for new gyrase inhibitors. In this paper we demonstrate that a new class of gyrase inhibitors, the gyramides, are bacteriostatic agents that competitively inhibit the ATPase activity of Escherichia coli gyrase and produce supercoiled DNA in vivo. E. coli cells treated with gyramide A have abnormally localized, condensed chromosomes that blocks DNA replication and interrupts chromosome segregation. The resulting alterations in DNA topology inhibit cell division through a mechanism that involves the SOS pathway. Importantly, gyramide A is a specific inhibitor of gyrase and does not inhibit the closely related E. coli enzyme topoisomerase IV. E. coli mutants with reduced susceptibility to gyramide A do not display cross-resistance to ciprofloxacin and novobiocin. The results demonstrate that the gyramides prevent bacterial growth by a mechanism in which the topological state of chromosomes is altered and halts DNA replication and segregation. The specificity and activity of the gyramides for inhibiting gyrase makes these compounds important chemical tools for studying the mechanism of gyrase and the connection between DNA topology and bacterial cell division.
منابع مشابه
N-Benzyl-3-sulfonamidopyrrolidines are a New Class of Bacterial DNA Gyrase Inhibitors.
This paper characterizes N-benzyl-3-sulfonamidopyrrolidines (gyramides) as DNA gyrase inhibitors. Gyramide A was previously shown to exhibit antimicrobial activity that suggested it inhibited bacterial cell division. In this study, we conducted target identification studies and identified DNA gyrase as the primary target of gyramide A. The gyramide A resistance-determining region in DNA gyrase ...
متن کاملStructural insight into negative DNA supercoiling by DNA gyrase, a bacterial type 2A DNA topoisomerase
Type 2A DNA topoisomerases (Topo2A) remodel DNA topology during replication, transcription and chromosome segregation. These multisubunit enzymes catalyze the transport of a double-stranded DNA through a transient break formed in another duplex. The bacterial DNA gyrase, a target for broad-spectrum antibiotics, is the sole Topo2A enzyme able to introduce negative supercoils. We reveal here for ...
متن کاملVibrio cholerae ParE2 Poisons DNA Gyrase via a Mechanism Distinct from Other Gyrase Inhibitors*
DNA gyrase is an essential bacterial enzyme required for the maintenance of chromosomal DNA topology. This enzyme is the target of several protein toxins encoded in toxin-antitoxin (TA) loci as well as of man-made antibiotics such as quinolones. The genome of Vibrio cholerae, the cause of cholera, contains three putative TA loci that exhibit modest similarity to the RK2 plasmid-borne parDE TA l...
متن کاملThe structural basis for substrate specificity in DNA topoisomerase IV.
Most bacteria possess two type IIA topoisomerases, DNA gyrase and topo IV, that together help manage chromosome integrity and topology. Gyrase primarily introduces negative supercoils into DNA, an activity mediated by the C-terminal domain of its DNA binding subunit (GyrA). Although closely related to gyrase, topo IV preferentially decatenates DNA and relaxes positive supercoils. Here we report...
متن کاملAdenylylation of Gyrase and Topo IV by FicT Toxins Disrupts Bacterial DNA Topology.
Toxin-antitoxin (TA) modules are ubiquitous molecular switches controlling bacterial growth via the release of toxins that inhibit cell proliferation. Most of these toxins interfere with protein translation, but a growing variety of other mechanisms hints at a diversity that is not yet fully appreciated. Here, we characterize a group of FIC domain proteins as toxins of the conserved and abundan...
متن کامل